stablediffsion ubuntu 配置流程
1.环境初始化
安装ubuntu server 版本,防止出现很多玄学问题。
安装nvidia 驱动,https://www.nvidia.cn/geforce/drivers,根据自己的显卡选择驱动,下载,sudo chmod +x 驱动名& bash 驱动名,安装完毕以后,nvidia-smi,出现下图极为成功。
安装cuda,https://developer.nvidia.com/cuda-toolkit-archive,选择符合自己系统版本的下载,安装依赖库
sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev
sudo sh cuda*linux.run
安装完成以后,配置文件 sudo vim ~/.bashrc,在最后加入
export PATH="$PATH:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/usr/local/cuda-12.1/bin"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.1/lib64
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-12.1
保存并source 使其生效
安装cudnn https://developer.nvidia.com/rdp/cudnn-download,选择符合自己系统的版本
tar -zxvf cudnn-*.tgz
cp cuda/lib64/* /usr/local/cuda*/lib64/
cp cuda/include/* /usr/local/cuda*/include/
2.安装stablediffusion
拉取代码
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
# install torch with CUDA support. See https://pytorch.org/get-started/locally/ for more instructions if this fails. install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # check if torch supports GPU; this must output "True". You need CUDA 11. installed for this. You might be able to use # a different version, but this is what I tested. python -c "import torch; print(torch.cuda.is_available())" # clone web ui and go into its directory git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui # clone repositories for Stable Diffusion and (optionally) CodeFormer mkdir repositories git clone https://github.com/CompVis/stable-diffusion.git repositories/stable-diffusion-stability-ai git clone https://github.com/CompVis/taming-transformers.git repositories/taming-transformers git clone https://github.com/sczhou/CodeFormer.git repositories/CodeFormer git clone https://github.com/salesforce/BLIP.git repositories/BLIP https://github.com/Stability-AI/generative-models.git repositories/generative-models # install requirements of Stable Diffusion curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh source $HOME/.cargo/env pip install transformers diffusers invisible-watermark --prefer-binary # install k-diffusion pip install git+https://github.com/crowsonkb/k-diffusion.git --prefer-binary # (optional) install GFPGAN (face restoration) pip install git+https://github.com/TencentARC/GFPGAN.git --prefer-binary # (optional) install requirements for CodeFormer (face restoration) pip install -r repositories/CodeFormer/requirements.txt --prefer-binary # install requirements of web ui pip install -r requirements.txt --prefer-binary # update numpy to latest version pip install -U numpy --prefer-binary # (outside of command line) put stable diffusion model into web ui directory # the command below must output something like: 1 File(s) 4,265,380,512 bytes dir model.ckpt python launch.py --force-enable-xformers --disable-nan-check --skip-python-version-check --opt-sdp-attention --xformers --api --no-half-vae --listen --port 10001
评论0